

High School Science Virtual Learning

College Chemistry Kinetics Equilibria Virtual Lab May 13, 2020

High School College Chemistry Lesson: May 6, 2020

Objective/Learning Target: Students will complete lab activities to learn about kinetics.

Let's Get Started:

1. What is a titration?

2. What is a pH indicator?

Let's Get Started: Answer Key

- 1. Titration is the slow addition of one solution of a known concentration (called a titrant) to a known volume of another solution of unknown concentration until the reaction reaches neutralization, which is often indicated by a color change
- 2. A pH indicator is a halochromic chemical compound added in small amounts to a solution so the pH (acidity or basicity) of the solution can be determined visually.

Lesson Activity:

- Just like the lessons from earlier this week, this activity will be split between two days.
- Today you will watch the lab video and complete the lab worksheet. There are some new concepts, so there are some additional notes added after the lab.
- Tomorrow you will check your answers and watch a deeper explanation of the lab.

Lesson Activity:

Directions

- Watch this <u>video</u>.
- Answer the questions on your <u>lab worksheet</u>.
- The data for the lab worksheet can be found <u>here</u>.

- What is a kinetics?
 - It is a description of how chemical reactions occur.
 - Most reactions occur over time. The loss of reactants to create products.
 - This change over time is called a Rate of Reaction and is defined as the rate of change in concentration over time
 - Rate Units = $1/\text{time} = 1/\text{s or s}^{-1}$

- Requirements for a Chemical Reaction to Occur
 - As seen in the video, reactions that occur instantaneously are fast and reactions that do not occur instantaneously, but do happen are considered slow.
 - Since we are talking about movement of molecules (breaking and making bonds), scientists constructed a mathematical association of what occurs.
 - These are based on a molecules kinetic energy (energy that a molecule uses as it is in motion)

- Requirements for a Chemical Reaction to Occur Continued
 - Since all reactions are not equivalent due to a variety of properties (like solid, liquids, gases, and aqueous solutions), most starting calculations are done with ideal gases and are based on Collision Theory.

• Collision Theory

- Collision theory states that gas atoms, ions, and molecules can react to form products when they collide, break, and form bonds, if they have enough kinetic energy called Activation Energy.
- Activation energy
 - The minimum amount of energy that particles must have in order to react
 - Serves as a barrier for reactions
 - If they do not have enough kinetic energy; they will "bounce apart" instead.

- Rate Law
 - An equation that relates the rate of a reaction to the concentrations of reactants (and catalysts) raised to various powers
 - $\circ \quad A + B \rightarrow products$
 - Rate = $k[A]^m[B]^n$

• Determining Powers in Rate Law:

Change in [A]	Change in rate	Change in rate	Change in rate
	of zero-order	of first-order	of second-order
	reaction	reaction	reaction
	(power = 0)	(power = 1)	(power = 2)
[A] doubles	No change	Rate doubles (2x)	Rate x 4

- Reaction Mechanism
 - Most reactions occur in a series of measurable short steps, and is known as a reaction mechanism
 - Each individual step is called an elementary step
 - Most elementary steps are not seen occur too quickly to see a distinction
 - Compounds which are made in one step and used in the following step are called intermediates
 - Some elementary steps do take a noticeable amount of time
 - The step which is the slowest step is called the rate-determining step.

- Reaction Mechanism Continued
 - A rate law or equation can be created from the rate determining step. Where the coefficients are the powers.

Step 1: $NO_2(g) + NO_2(g) \rightarrow NO(g) + NO_3(g)$ Slow

<u>Step 2: NO₃(g) + CO(g) \rightarrow NO₂(g) + CO₂(g) Fast</u>

Overall Reaction: $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$

Rate law:

Rate = $k[NO_2]^2$

Kinetics Video

 To better understand the process of kinetics please watch this <u>Crash Course Video</u>. Make sure to take detailed notes and write down his example problems.

Practice

Complete the following questions using the information you learned during the lesson activity.

Questions:

 $k[\Gamma] k[\Gamma]$

b

1. Use the following data to determine the rate law for the equation:

$NH_4^+(aq) + NO_2^-(aq) \rightarrow N_2(g) + 2H_2O()$							
Experiment	$[\mathrm{NH_4}^+](M)$	$[NO_2^-](M)$	Rate (M/s)				
1	0.2500	0.2500	1.25×10^{-3}				
2	0.5000	0.2500	2.50×10^{-3}				
3	0.2500	0.1250	6.25×10^{-4}				
$M_{4}^{+}[NO_{2}^{-}]$	d.	$k[NH_4^+]^{1/2}[NO_2^-]^2$					
NH4 ⁺] ² [NO2 ⁻] NH4 ⁺][NO2 ⁻] ^{1/2}	e.	$k[NH_4^+][NO_2^-]^2$					

Questions:

2. Use the following data to determine the rate law for the equation:

 $2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$

[NO] (M)	$[Cl_2](M)$	Rate (M/s)
0.0300	0.0100	3.4×10^{-4}
0.0150	0.0100	8.5×10^{-5}
0.0150	0.0400	3.4×10^{-4}
	[NO] (<i>M</i>) 0.0300 0.0150 0.0150	[NO] (M) [Cl ₂] (M) 0.0300 0.0100 0.0150 0.0100 0.0150 0.0400

- Rate = k[NO][Cl₂] Rate = k[NO][Cl₂]² a.
- b.
- Rate = $k[NO]^2[Cl_2]$ C.

d. Rate = $k[NO]^{2}[Cl_{2}]^{2}$ e. Rate = $k[NO][Cl_{2}]^{1/2}$

Questions:

3. Use the following data to determine the rate law for the equation: $2A + 2B + 2C \rightarrow Products$

Initial [A]	Initial [B]	Initial [C]	rate
0.273	0.763	0.400	3.0
0.819	0.763	0.400	9.0
0.273	1.526	0.400	12.0
0.273	0.763	0.800	6.0

a. rate = k[A][B][C] b. rate = k[A][B]²[C] c. rate = k[A]³[B]⁴[C]² d. rate = k[A]²[B]²[C]²

Answer Key: 1. A 2. C 3. B